APCS :: Lab 5.1 – Improving SuperBot
Practice with member variables

Download the BlueJ project we started in class that counts the total number of steps the robot has taken, and has a move(int numSteps) method.

Part 0:
0.1 Modify the move(int numSteps) method so that if a negative number is given, the robot moves \textit{backward} that many steps. You can think of the recursive method this way:
\begin{itemize}
 \item If numSteps == 0
 \hspace{1cm} then stop
 \item Else if numSteps > 0
 \hspace{1cm} then move() and recursively call numSteps
 \item Else
 \hspace{1cm} Turn around,
 \hspace{1cm} recursively call move with numSteps having the opposite sign
 \hspace{1cm} turn around again.
\end{itemize}

Part 1:
1.1 Add a recursive method called \texttt{void putBeepers(int numToPut)}. The method’s argument is the number of beepers that the robot should put down. Prevent the program from crashing by checking to see if there are any \texttt{BeepersInBeeperBag} before putting a beeper down.

1.2 Add a private member variable that keeps track of the number of beepers the robot has in its bag. (Remember to account for the beepers the robot starts out with). When a beeper is put down the number should decrement, when a beeper is picked up it should increment.

1.3 Add a method called \texttt{int getNumBeepers()} which returns the number of beepers (yes, this will be a one line method).

1.4 Modify your \texttt{putBeepers} method so that the robot won’t put down any beepers unless it has enough to do so. For example, if the robot has 8 beepers, and a command is issued to \texttt{putBeepers(10)} the robot should not put any beepers down. Instead, print an error message to the console.

Part 2:
2.1 Add two member variables to keep track of the robot’s street and avenue. Modify the move method so that it updates these variables to accurately reflect the robot’s current location. (NOTE: if the robot moves and it’s facing north immediately after moving, then its street should increment by one, and its avenue would stay the same.

2.2 Add two methods: \texttt{int getStreet()} and \texttt{int getAvenue()} that return the robot’s current street and avenue respectively.

2.3 Write a method called \texttt{void moveTo(int st, int ave)} which attempts to move the robot from it’s current location to the location given in the method parameters. HINT: Always make the robot face a particular direction before moving it – it makes the math easier. It IS NOT required that the robot be facing any particular direction once at the location, only that the robot is at the location.